363 research outputs found

    On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs

    Get PDF
    In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water would also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble

    Quantifying components of aerosol-cloud-radiation interactions in climate models

    Get PDF
    The interaction of anthropogenic aerosols with radiation and clouds is the largest source of uncertainty in the radiative forcing of the climate during the industrial period. Here we apply novel techniques to diagnose the contributors to the shortwave (SW) effective radiative forcing (ERF) from aerosol-radiation-interaction (ERFari) and from aerosol cloud interaction (ERFaci) in experiments performed in phase 5 of the Coupled Model Intercomparison Project. We find that the ensemble mean SW ERFari+aci of −1.40±0.56 W m−2 comes roughly 25% from ERFari (−0.35±0.20 W m−2) and 75% from ERFaci (−1.04±0.67 W m−2). ERFari is made up of −0.62±0.30 W m−2 due to aerosol scattering opposed by +0.26 ± 0.12 W m−2 due to aerosol absorption and is largest near emission sources. The ERFari from nonsulfate aerosols is +0.13 ± 0.09 W m−2, consisting of −0.15±0.11 W m−2 of scattering and +0.29 ± 0.15 W m−2 of absorption. The change in clear-sky flux is a negatively biased measure of ERFari, as the presence of clouds reduces the magnitude and intermodel spread of ERFari by 40–50%. ERFaci, which is large both near and downwind of emission sources, is composed of −0.99±0.54 W m−2 from enhanced cloud scattering, with much smaller contributions from increased cloud amount and absorption. In models that allow aerosols to affect ice clouds, large increases in the optical depth of high clouds cause substantial longwave and shortwave radiative anomalies. Intermodel spread in ERFaci is dominated by differences in how aerosols increase cloud scattering, but even if all models agreed on this effect, over a fifth of the spread in ERFaci would remain due solely to differences in total cloud amount

    Multi-channel Transformers for Multi-articulatory Sign Language Translation

    Full text link
    Sign languages use multiple asynchronous information channels (articulators), not just the hands but also the face and body, which computational approaches often ignore. In this paper we tackle the multi-articulatory sign language translation task and propose a novel multi-channel transformer architecture. The proposed architecture allows both the inter and intra contextual relationships between different sign articulators to be modelled within the transformer network itself, while also maintaining channel specific information. We evaluate our approach on the RWTH-PHOENIX-Weather-2014T dataset and report competitive translation performance. Importantly, we overcome the reliance on gloss annotations which underpin other state-of-the-art approaches, thereby removing future need for expensive curated datasets

    Cloud feedbacks in extratopical cyclones: insight from long-term satellite data and high-resolution global simulations

    Get PDF
    A negative extratropical shortwave cloud feedback driven by changes in cloud optical depth is a feature of global climate models (GCMs). A robust positive trend in observed liquid water path (LWP) over the last two decades across the warming Southern Ocean supports the negative shortwave cloud feedback predicted by GCMs. This feature has been proposed to be due to transitions from ice to liquid with warming. To gain insight into the shortwave cloud feedback we examine extratropical cyclone variability and the response of extratropical cyclones to transient warming in GCM simulations. Multi-Sensor Advanced Climatology Liquid Water Path (MAC-LWP) microwave observations of cyclone properties from the period 1992–2015 are contrasted with GCM simulations, with horizontal resolutions ranging from 7 km to hundreds of kilometers. We find that inter-cyclone variability in LWP in both observations and models is strongly driven by the moisture flux along the cyclone's warm conveyor belt (WCB). Stronger WCB moisture flux enhances the LWP within cyclones. This relationship is replicated in GCMs, although its strength varies substantially across models. It is found that more than 80 % of the enhancement in Southern Hemisphere (SH) extratropical cyclone LWP in GCMs in response to a transient 4 K warming can be predicted based on the relationship between the WCB moisture flux and cyclone LWP in the historical climate and their change in moisture flux between the historical and warmed climates. Further, it is found that that the robust trend in cyclone LWP over the Southern Ocean in observations and GCMs is consistent with changes in the moisture flux. We propose two cloud feedbacks acting within extratropical cyclones: a negative feedback driven by Clausius–Clapeyron increasing water vapor path (WVP), which enhances the amount of water vapor available to be fluxed into the cyclone, and a feedback moderated by changes in the life cycle and vorticity of cyclones under warming, which changes the rate at which existing moisture is imported into the cyclone. Both terms contribute to increasing LWP within the cyclone. While changes in moisture flux predict cyclone LWP trends in the current climate and the majority of changes in LWP in transient warming simulations, a portion of the LWP increase in response to climate change that is unexplained by increasing moisture fluxes may be due to phase transitions. The variability in LWP within cyclone composites is examined to understand what cyclonic regimes the mixed-phase cloud feedback is relevant to. At a fixed WCB moisture flux cyclone LWP increases with increasing sea surface temperature (SST) in the half of the composite poleward of the low and decreases in the half equatorward of the low in both GCMs and observations. Cloud-top phase partitioning observed by the Atmospheric Infrared Sounder (AIRS) indicates that phase transitions may be driving increases in LWP in the poleward half of cyclones

    Theory of differential inclusions and its application in mechanics

    Full text link
    The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load change is studied. Analytical methods of investigation of systems with such asymmetrical friction based on the use of Lyapunov functions are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems

    Probing of InAs/AlSb double barrier heterostructures by ballistic electron emission spectroscopy

    Get PDF
    InAs/AlSb resonant tunneling heterostructures have been studied by ballistic electron emission spectroscopy. Current thresholds attributed to quasibound states in the quantum well and emission over the AlSb barriers are observed. The observed shape of thresholds is consistent with inelastic processes in the InAs layers of the structures, where a high number of electron–hole pairs are generated. A threshold consistent with the generation of electron–hole pairs in quantum well states is observed

    Pheochromocytoma presenting with arterial and intracardiac thrombus in a 47-year-old woman: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pheochromocytoma is a rare cause of hypertension but it could have severe consequences if not recognized and treated appropriately. The association of pheochromocytoma and thrombosis is even rarer but significantly increases management complexity, morbidity and mortality. To the best of our knowledge, this is the first report of a patient with pheochromocytoma presenting with left axillary arterial and intracardiac thrombus.</p> <p>Case presentation</p> <p>A 47-year-old Caucasian woman with a past medical history of hypertension presented for medical attention with left arm numbness. Doppler ultrasound showed an obstructing thrombus in her left axillary artery. She had symptom resolution after stent placement in her left axillary artery. A subsequent echocardiogram demonstrated a large intracardiac mass and abdominal computed tomography revealed a 7 cm mass between her spleen and left kidney. Labile blood pressure was noted during admission and she had very high levels of plasma and 24-hour urine catecholamines and metanephrines tests. A (123)I- metaiodobenzylguanidine scan showed intense uptake in the left abdominal mass. After adequate alpha blockage with phenoxybenzamine, laparoscopic tumor resection was performed without complications. She had normal metanephrines and complete symptom resolution afterwards. The intracardiac mass also disappeared with anticoagulation. All other endocrine laboratory abnormalities returned to normal after surgery.</p> <p>Conclusion</p> <p>Arterial and ventricular thrombosis occurring in patients with pheochromocytoma is rare. A multi-disciplinary approach is necessary in caring for this type of patient. Catecholamines likely contributed to the development of thrombosis in our patient. Early recognition of pheochromocytoma is the key to improving outcome.</p

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    A large ozone-circulation feedback and its implications for global warming assessments.

    Get PDF
    State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever1. Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations1,2. Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4×CO2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks3-5.We thank the European Research Council for funding through the ACCI project, project number 267760. The model development was part of the QESM-ESM project supported by the UK Natural Environment Research Council (NERC) under contract numbers RH/H10/19 and R8/H12/124. We acknowledge use of the MONSooN system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, which is a strategic partnership between the UK Met Office and NERC. A.C.M. acknowledges support from an AXA Postdoctoral Research Fellowship.This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/nclimate/journal/v5/n1/full/nclimate2451.html
    corecore